SUM SUSTAINABLE URBAN MOBILITY

Linee guida per la mobilità sostenibile nelle aree urbane

PRIN 2009

REPORT SCENARIO

SPRAWL_02_C

Sommario

1 Desc	crizione dello scenario	1
1.1 In	terventi sul sistema dell'offerta di trasporto	1
1.1.1	Interventi sulla rete stradale	1
1.1.2	Interventi sulla rete di trasporto su ferro	2
1.1.3	Rete ferroviaria regionale	3
1.1.4	Rete ferroviaria sub-urbana	4
1.1.5	Rete metropolitana	5
1.1.6	Rete metropolitana leggera	6
1.1.7	Rete tranviaria	7
1.2 In	terventi sullo stock immobiliare	8
2. R	isultati della simulazione dello scenario (13_Localizzazione vs 01_zone_rif)	9
2.1 A	nalisi Sintetica dello Scenario	9
2.1.1	Popolazione e Addetti nell'area di Studio e nelle 5 PGTU	9
2.1.2	Struttura della domanda come varia la matrice OD	10
2.2 A	nalisi di dettaglio della distribuzione spaziale della Popolazione	11
2.2.1	Variazione Occupati di fascia alta	11
2.2.2	Variazione Occupati di fascia bassa	11
2.2.3	Variazione Popolazione totale	12
2.3 A	nalisi di dettaglio della distribuzione spaziale degli Addetti (AddCom, AddS	ervPri,
AddTot	·)	13
2.3.1	Variazione degli Addetti al Commercio	13
2.3.2	Variazione degli Addetti ai Servizi Privati	13
2.3.3	Variazione Addetti Totali	14
2.4 A	nalisi di dettaglio delle variazioni delle Matrici Origine-Destinazione	15
2.4.1	Motivo	15
2.4.	1.1 Spoostamenti Casa-Lavoro	15
2.4.	1.2 Spostamenti Casa-Altri Motivi	15
2.4.2	Analisi per singolo modo di trasporto	15
2.4.	2.1 Auto	16
2.4.		
2.4.	• •	
2.4.2		
2.4.3	Ripartizione modale totale e (in Entrata e in Uscita) per PGTU	
2.4.	3.2 In Entrata	18

3.	Analisi dell'	'elasticità	del modello	di simulazione	(13)	Loc. vs
\sim .	A A II WILLS I WOLL	CIUSTICITU	uci ilivuciiv	ui siiiiuiaziviic	110	LUC.

14_zone etc)					
3.1 Va	ariazione di Popolazione	21			
3.1.1	Variazione Occupati di fascia Alta	22			
3.1.2	Occupati di fascia Bassa	23			
3.2 Va	ariazione di Addetti	24			
	11440000 41 00 1111101 010				
3.2.2	Addetti ai Servizi Privati	26			
4. Ana	ılisi di sostenibilità urbana	27			
4.1 Sc	ostenibilità economica	28			
4.2 Sc	ostenibilità ambientale	32			
4.3 Sc	ostenibilità sociale	36			
Bibling	rafia	39			

1 Descrizione dello scenario

Lo scenario Sprawl_02_C è rappresentativo di un'ipotesi di sviluppo disperso della città caratterizzato da bassi valori di densità residenziale e separazione delle diverse funzioni urbane. Gli interventi previsti sono distribuiti nelle aree periferiche della città ed in particolar modo nel quinto anello.

Lo scenario considera inoltre una significativa espansione della rete di trasporto pubblico su ferro, così come previsto dal Piano Regolatore Generale, approvato nel 2008.

		Sistema di Trasporto				
		Rete Parziale	Rete Completa			
	LU_PRG	PRG_P	PRG_C			
	LU_Compatto_01	COMPATTO_01_P	COMPATTO_01_C			
olon	LU_Compatto_02	COMPATTO_02_P	COMPATTO_02_C			
Uso del suolo	LU_Sprawl_01	SPRAWL_01_P				
Oso	LU_Sprawl_02		SPRAWL_02_C			
	LU_TOD_01	TOD_01_P				
	LU_TOD_02		TOD_02_C			

1.1 Interventi sul sistema dell'offerta di trasporto

1.1.1 Interventi sulla rete stradale

I nuovi interventi infrastrutturali sulla rete stradale previsti, come si può notare anche dai dati numerici riportati nella tabella 1 sono per oltre l'80% concentrati nelle corone PGTU quattro e cinque.

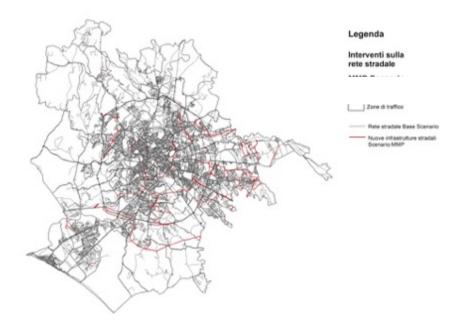


Figura 1: Nuovi interventi infrastrutturali sulla rete stradale.

Corone PGTU	Lunghezza nuovi interventi	Distribuzione percentuale nuovi interventi per corone PGTU
	[m]	[%]
1	959	0,5%
2	9.642	4,5%
3	23.084	10,8%
4	72.179	33,9%
5	106.941	50,3%
Totale	212.805	100%

Tabella 1: Nuovi interventi infrastrutturali sulla rete stradale suddivisi per corone PGTU

1.1.2 Interventi sulla rete di trasporto su ferro

Nelle previsioni di trasformazione futura sono previsti una serie d'interventi che interessano tutte le infrastrutture di trasporto su ferro dell'area metropolitana di Roma. Questi interventi prevedono sia un miglioramento della rete esistente, tramite una velocizzazione della rete e la rilocalizzazione di alcune stazioni, sia la realizzazione di nuove linee e l'apertura di nuove stazioni. Le infrastrutture su ferro sono articolate in cinque differenti tipologie di reti, di seguito elencate:

- Rete ferroviaria regionale;
- Rete ferroviaria sub-urbana;
- Rete metropolitana;
- Rete metropolitana leggera;
- Rete tranviaria.

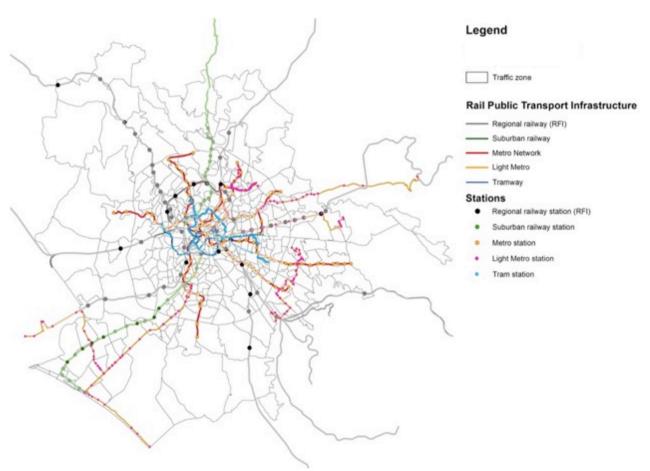


Figura 2: Mappa dei nuovi interventi sulla rete di trasporto pubblico su ferro

Per ognuna di queste tipologie di rete di trasporto pubblico su ferro è riportata a seguire una breve descrizione, con il supporto di figure e tabelle sintetiche.

1.1.3 Rete ferroviaria regionale

Gli interventi infrastrutturali previsti sulla rete ferroviaria regionale, sono di piccola rilevanza ed hanno l'obiettivo di migliorare i livelli di servizio della rete. L'unico intervento infrastrutturale di rilevante importanza riguarda il completamento dell'anello ferroviario che circonda il centro della città in modo chiudere la circonvallazione. Questo nuovo tratto denominato "Cintura Nord" o "FR0" dovrebbe collegare le stazioni di Roma Nomentana e Roma San Pietro con un tracciato di lungo circa 12,8 Km. Per quanto riguarda le nuove stazioni è prevista l'apertura di 11 nuove stazioni ferroviarie dedicate al servizio regionale.

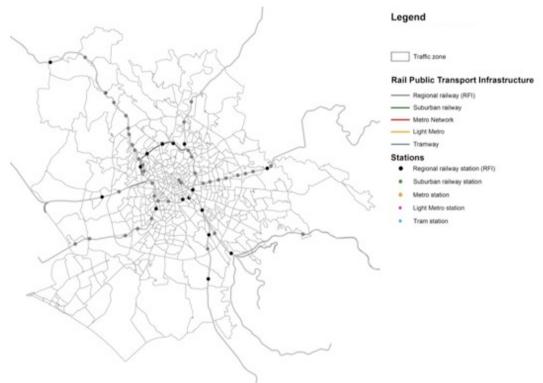


Figura 3: Mappa dei nuovi interventi di infrastrutturali sulla rete ferroviaria regionale

Nuove stazioni	Linea	Stato
Zama	FR 0	Nuova
Roma Balduina	FR 0	Nuova
Farneto	FR 0	Nuova
Vigna Clara	FR 0	Nuova
Pigneto	FR 1	Nuova
Salario	FR 1	Rilocalizzata
Portuense	FR 1	Nuova
Ponte di Nona	FR 2	Nuova
?	FR 3	Nuova
?	FR 4	Nuova
Maccarese Fregene	FR 5	Nuova
?	FR 8	Nuova
?	FR 8	Nuova

Tabella 2: Nuovi interventi di infrastrutturali sulla rete di trasporto su ferro regionale

1.1.4 Rete ferroviaria sub-urbana

Per quanto riguarda la rete ferroviaria suburbana è prevista la dismissione di una delle tre linee presenti nello Scenario di Base, la linea Roma-Giardinetti. Infatti l'attuale tracciato verrà riconvertito a partire dalla stazioni di Togliatti e fino a Giardinetti nella nuova linea della metro C. Per quanto riguarda invece il tratto della Roma-Giardinetti precedente alla stazione di Togliatti è prevista la sua riconversione in una linea tranviaria. Infine, per le altre due linee non sono in programma rilevanti interventi infrastrutturali, ad eccezione dell'apertura di sette nuove stazioni lungo la linea Roma-Lido.

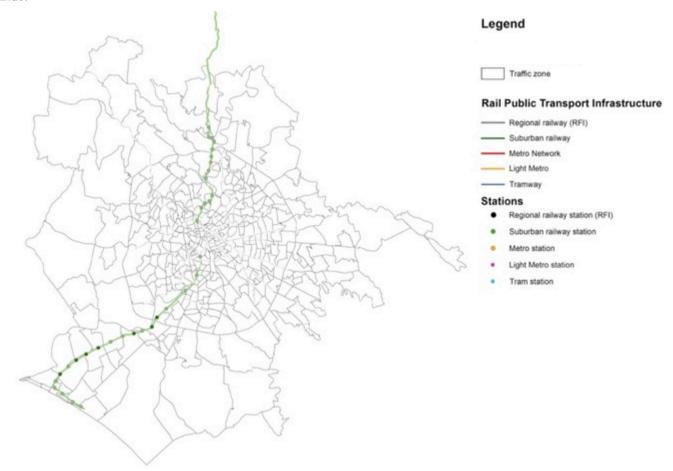


Figura 4: Mappa dei nuovi interventi di infrastrutturali sulla rete sub-urbana

1.1.5 Rete metropolitana

Gli interventi di potenziamento della rete metropolitana previsti dallo scenario sono relativi al prolungamento della linea A, B e B1 e alla realizzazione di altre due linee, la linea C e D. La linea C, attualmente in costruzione, attraverserà la città da Nord-Ovest ovvero dalla stazione di Tor di Quinto alla stazione di Pantano. Per questa linea sono previste due diramazioni. La prima, denominata Linea C1, verso Ovest, si estenderà dalla stazione di Teano a Ponte Mammolo. La seconda diramazione, denominata Linea C2, verso Nord, si estenderà dalla stazione di Giuochi Istmici alla stazione di Tor di Quinto. Per la linea D i lavori di realizzazione sono stati già avviati, e una volta ultimati, la linea collegherà la città da Nord a Sud, dalla stazione di Ojetti fino alla stazione di EUR Agricoltura. Nel complesso è prevista l'apertura di 84 nuove stazioni e la realizzazione di 88,7 nuovi Km di infrastrutture ferroviarie.

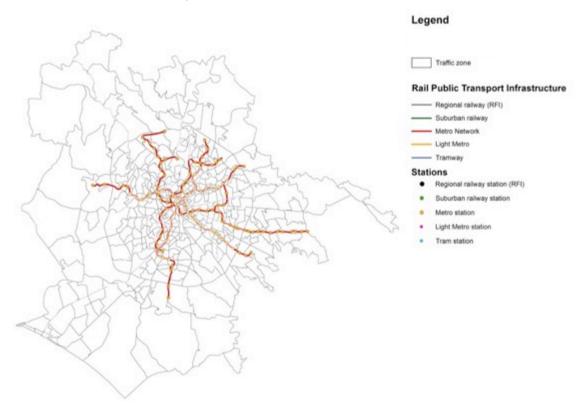


Figura 5: Mappa dei nuovi interventi di infrastrutturali sulla rete metropolitana

Linea	Lunghezza tot [Km]	Lunghezza nuovi tratti [Km]	Stazioni tot [n°]	Nuove stazioni [n°]
Linea A	27,8	9,4	34	7
Linea B	27,3	9,3	29	7
Linea B1	8,5	4,9	8	4
Linea C	36,6	36,6	39	39
Linea C1	4,9	4,9	5	5
Linea C2	2,6	2,6	2	2
Linea D	21,0	21,0	20	20

Tabella 3: Nuovi interventi di infrastrutturali sulla rete metropolitana

1.1.6 Rete metropolitana leggera

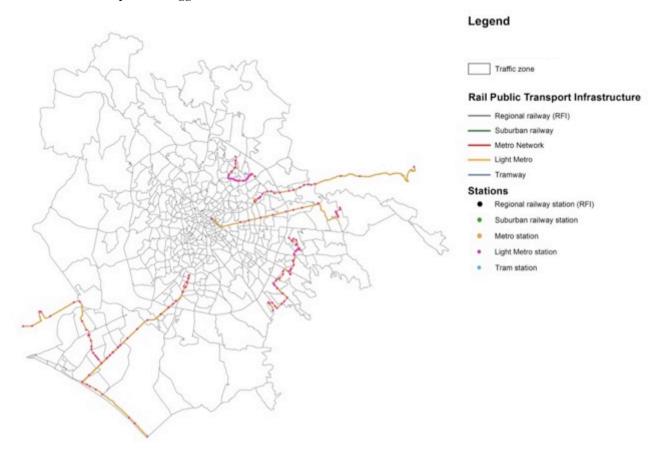


Figura 6: Mappa dei nuovi interventi infrastrutturali sulla rete metropolitana leggera

Linea	Estensione [Km]	Fermate [n°]
Linea V	7,0	42
Tor Vaianica – Aereoporto	32,5	53
Agricoltura - Aereoporto	34,7	69
Tivoli - Rebbibia	24,3	36
Tor Bella Monica - Ciampino	18,1	43
Termini - ?	19,9	30

Tabella 4: Nuovi interventi di infrastrutturali sulla rete metropolitana leggera

1.1.7 Rete tranviaria

Le opere di potenziamento della rete tranviaria prevedono sia alcuni minimi interventi di prolungamento e variazione del percorso per le linee esistenti sia la realizzazione di altre tre nuove linee con una lunghezza complessiva di circa 17,8 Km lungo i quali saranno dislocate altre 107 nuove fermate.

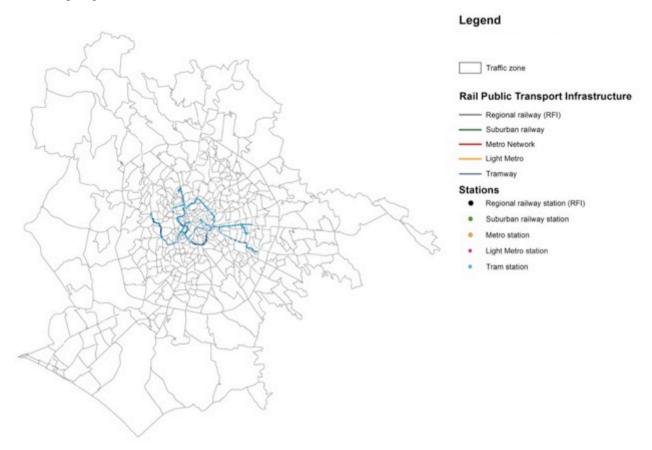


Figura 7: Mappa dei nuovi interventi di infrastrutturali sulla rete tranviaria

Linee	Percorso	Lunghezza totale [Km]	Lunghezza nuovi tratti [Km]	Fermate tot [n°]
Linea 2	Piazza Mancini - Piazzale Flaminio	2,7	-	15
Linea 3	Piazza Thorvaldsen - Stazione Trastevere	14,5	1,2	82
Linea 5	Stazione Termini - Piazza dei Gerani	7,2	-	45
Linea 8	nea 8 Piazza Venezia - Via del Casaletto		3,5	58
Linea 14	ea 14 Stazione Termini - V.le Palmiro Togliatti		-	37
Linea 19	Piazza dei Gerani – P.za Risorgimento	14,7	0,4	92
Linea ?	Stazione Termini -T. Spaccata	9,2	9,2	54
Tram distributore		4,8	4,8	33
Linea ?	San Giovanni – Piramide	3,8	3,8	20

Tabella 5: Nuovi interventi di infrastrutturali sulla rete tranviaria

1.2 Interventi sullo stock immobiliare

Lo scenario Sprawl_01_C è rappresentativo di un'ipotesi di sviluppo urbano disperso, caratterizzato da bassi valori di densità residenziale nelle aree di intervento e separazione delle diverse funzioni urbane, nel quali gli 11,6 milioni di mq di SUL residenziali sono distribuiti nelle aree periferiche della città ed in particolar modo nel quinto anello. In accordo con lo scenario di base, tali aree sono attualmente caratterizzate da fenomeni di dispersione insediativa. In tale scenario si ipotizza che tale fenomeno accresca nei prossimi vent'anni. I caratteri attuali e passate dei processi di dispersione urbana, così come le previsioni di nuove infrastrutture stradali sono stati considerati come determinanti dello sviluppo futuro di tali aree.

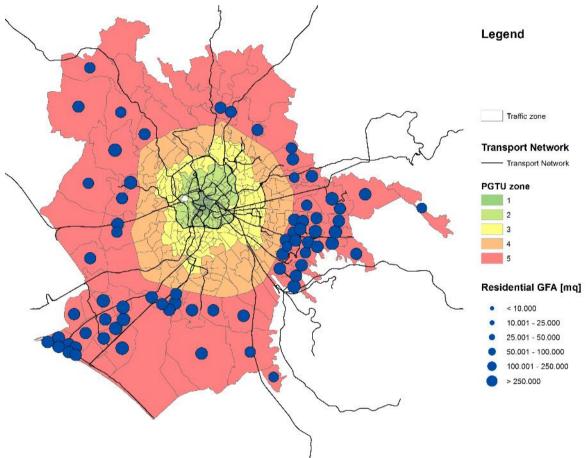


Figura 8: Interventi sullo stock immobiliare

Corone	Variazione SUL Residenziale		Variazione IUT Residenziale	Variazione Abitazioni	
	(m²)	(%)	(m²/ha)	(n)	(n/ha)
1	0,00	0,00%	0,00	0	0,00
2	0,00	0,00%	0,00	0	0,00
3	0,00	0,00%	0,00	0	0,00
4	0,00	0,00%	0,00	0	0,00
5	11.642.185,00	57,13%	123,72	138.597	1,47
Totali	11.642.185,00	11,99%	90,56	138.597	1,08

Tabella 6: Variazione della SUL residenziale, del numero di abitazioni e dell'Indice di Utilizzazione Territoriale

2. Risultati della simulazione dello scenario (13_Localizzazione vs 01_zone_rif)

2.1 Analisi Sintetica dello Scenario

2.1.1 Popolazione e Addetti nell'area di Studio e nelle 5 PGTU

Dall'analisi dei dati numerici riportati nelle seguenti tabelle, si nota una tendenza della *popolazione* e degli *addetti* a ricollocarsi prevalentemente nella quinta corona PGTU, dove è maggiore la disponibile di nuova SUL

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	10.683	18.911	60.488	52.916	10.632	103.968
2	49.153	141.640	394.995	180.873	32.667	343.129
3	80.627	337.605	899.092	130.995	50.081	316.754
4	47.851	214.205	528.610	92.069	38.563	232.372
5	58.594	243.162	620.452	72.307	40.103	206.209
Totale	246.908	955.523	2.503.637	529.160	172.046	1.202.432

Tabella 7: Popolazione e Addetti nell'area di Studio per corone PGTU scenario di Base

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	6.964	11.607	37.742	46.873	7.543	91.988
2	38.488	90.879	269.579	146.472	20.319	282.265
3	76.441	255.559	709.281	117.870	34.472	280.180
4	51.375	181.252	469.553	82.581	34.897	236.793
5	93.278	468.996	1.125.871	130.538	90.219	383.613
Totale	266.546	1.008.293	2.612.025	524.334	187.449	1.274.839

Tabella 8: Popolazione e Addetti nell'area di Studio per corone PGTU scenario SPRAWL_02_C Simulato

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	-3.719	-7.304	-22.746	-6.043	-3.089	-11.980
2	-10.665	-50.761	-125.416	-34.401	-12.348	-60.864
3	-4.186	-82.046	-189.811	-13.125	-15.609	-36.574
4	3.524	-32.953	-59.057	-9.488	-3.666	4.421
5	34.684	225.834	505.419	58.231	50.116	177.404
Totale	19.638	52.770	108.388	-4.826	15.403	72.407

Tabella 9: Variazione di Popolazione e Addetti nell'area di Studio e nelle 5 PGTU tra gli scenari di Base e SPRAWL_02_C Simulato

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	-35%	-39%	-38%	-11%	-29%	-12%
2	-22%	-36%	-32%	-19%	-38%	-18%
3	-5%	-24%	-21%	-10%	-31%	-12%
4	7%	-15%	-11%	-10%	-10%	2%
5	59%	93%	81%	81%	125%	86%
Totale	8%	6%	4%	-1%	9%	6%

Tabella 10: Variazione percentuale di Popolazione e Addetti nell'area di Studio e nelle 5 PGTU tra gli scenari di Base e SPRAWL_02_C Simulato

2.1.2 Struttura della domanda come varia la matrice OD

Di seguito sono riportate le matrici OD degli spostamenti per modo e motivo tra le varie corone PGTU, dall'analisi dei valori numerici si può osservare che soltanto la quinta corona PGTU è interessata da un incremento di domanda di spostamenti in entrata e in uscita, mentre nelle altre corone si registra una generale diminuzione di domanda di spostamenti.

	1	2	3	4	5	Totale
1	5.331	4.594	2.272	609	286	13.090
2	13.556	52.506	23.400	6.168	2.946	98.576
3	15.743	62.269	102.252	26.130	13.223	219.616
4	5.026	26.224	41.923	40.246	14.574	127.994
5	3.189	20.045	34.446	25.549	63.890	147.118
Totale	42.844	165.637	204.293	98.701	94.920	606.395

Tabella 11: Matrice OD per lo scenario di Base

	1	2	3	4	5	Totale
1	4.011	3.449	2.119	648	598	10.825
2	10.775	34.361	18.447	6.097	5.544	75.224
3	13.987	49.644	76.690	25.462	23.127	188.910
4	4.634	22.645	33.674	32.031	23.586	116.571
5	5.355	31.888	49.740	39.588	135.181	261.752
Totale	38.762	141.987	180.670	103.827	188.036	653.282

Tabella 12: Matrice OD per lo scenario SPRAWL_02_C

	1		2		3		4		5		Tota	le
1	-1.319	-25%	-1.145	-25%	-152	-7%	39	6%	312	109%	-2.265	-17%
2	-2.781	-21%	-18.145	-35%	-4.953	-21%	-71	-1%	2.598	88%	-23.352	-24%
3	-1.756	-11%	-12.625	-20%	-25.563	-25%	-667	-3%	9.904	75%	-30.706	-14%
4	-391	-8%	-3.579	-14%	-8.250	-20%	-8.215	-20%	9.012	62%	-11.423	-9%
5	2.166	68%	11.844	59%	15.294	44%	14.039	55%	71.291	112%	114.634	78%
Totale	-4.082	-10%	-23.650	-14%	-23.623	-12%	5.125	5%	93.116	98%	46.887	8%

Tabella 13: Confronto tra le Matrici OD dello scenario di Base e dello scenario SPRAWL_02_C

2.2 Analisi di dettaglio della distribuzione spaziale della Popolazione

2.2.1 Variazione Occupati di fascia alta

Le zone di traffico comprese nella quinta corona PGTU, sono quelle interessate dalle maggiori variazioni positive di occupati di fascia alta.

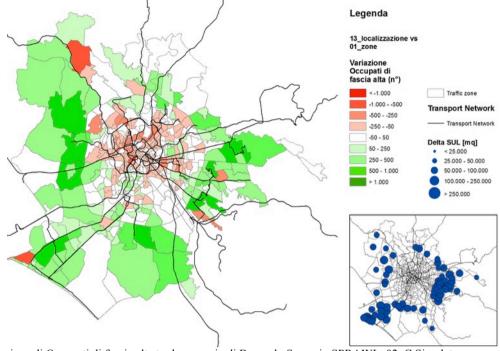


Figura 9: Variazione di Occupati di fascia alta tra lo scenario di Base e lo Scenario SPRAWL 02 C Simulato

2.2.2 Variazione Occupati di fascia bassa

Anche per gli *occupati di fascia bassa* è evidente una forte tendenza a ricollocarsi nelle zone di traffico più periferiche, appartenenti prevalentemente alla quinta corona PGTU.

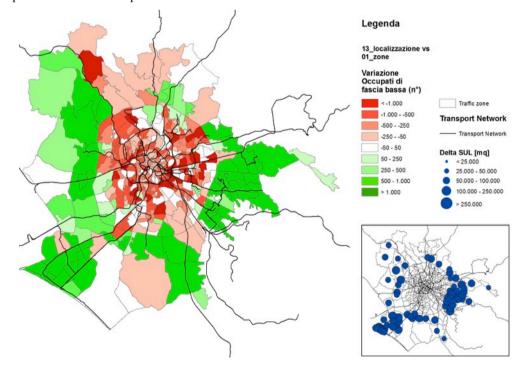


Figura 10: Variazione di Occupati di fascia bassa tra lo scenario di Base e lo Scenario SPRAWL 02 C Simulato

2.2.3 Variazione Popolazione totale

La gran parte della popolazione residente a seguito della simulazione va a rilocalizzare nelle aree periferiche, appartenenti prevalentemente alla quinta corona PGTU, in ragione del fatto che gli interventi di trasformazione urbana previsti dallo scenario Sparwl_02_C sono concentrati esclusivamente in questa corona.

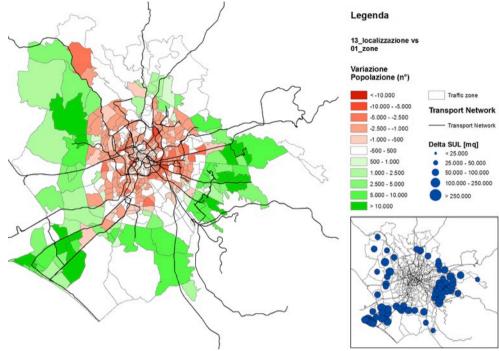


Figura 11: Variazione di Popolazione tra lo scenario di Base e lo Scenario SPRAWL_02_C Simulato

2.3 Analisi di dettaglio della distribuzione spaziale degli Addetti (AddCom, AddServPri, AddTot)

2.3.1 Variazione degli Addetti al Commercio

Per gli *addetti al commercio* si può notare che la gran parte delle variazioni positive sono localizzate nelle zone di traffico più periferiche appartenenti alla quinta corona PGTU.

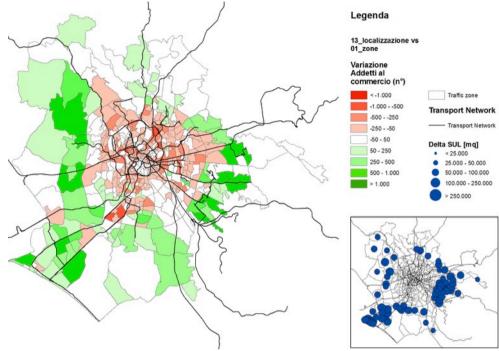


Figura 12: Variazione degli Addetti al Commercio tra lo scenario di Base e lo Scenario SPRAWL 02 C

2.3.2 Variazione degli Addetti ai Servizi Privati

Per gli *addetti ai servizi* privati come si può osservare dalla figura di seguito riportata, gli incrementi maggiori sono localizzati nelle zone di traffico appartenenti alla quinta corona PGTU.

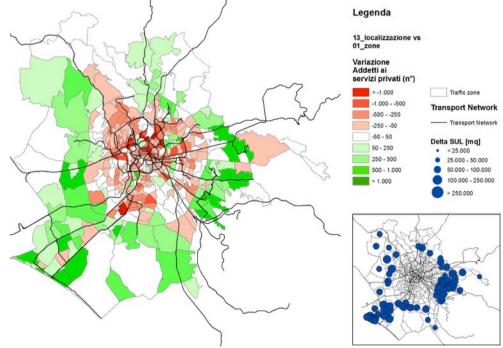


Figura 13: Variazione degli Addetti ai Servizi Privati tra lo scenario di Base e lo Scenario SPRAWL_02_C Simulato

2.3.3 Variazione Addetti Totali

Valutando i risultati ottenuti dalla simulazione relativamente agli *addetti totali* è evidente la tendenza a rilocalizzare le attività nelle zone di traffico più periferiche comprese nella quinta corona PGTU.



Figura 14: Variazione degli Addetti Totali tra lo scenario di Base e lo Scenario SPRAWL_02_C Simulato

2.4 Analisi di dettaglio delle variazioni delle Matrici Origine-Destinazione

Nel seguente paragrafo sono riportati i risultati ottenuti dal confronto tra le Matrici OD per lo scenario di Base e lo scenario Sprawl_01_C Simulato. Le matrici di seguito riportate sono state suddivise in base al *motivo* dello spostamento e in base al *modo* di spostamento.

2.4.1 Motivo

I valori numerici riportati nelle seguenti matrici OD indicano gli spostamenti da e per le singole corone e sono suddivisi in due motivi principali di spostamento:

- Lavoro (LPF)
- Altri motivi (ScSup, ScUni e Altro).

2.4.1.1 Spoostamenti Casa-Lavoro

I risultati numerici ottenuti dalla simulazione indicano un incremento degli spostamenti casa-lavoro da, verso e all'interno della quinta corona, questo sta ad indicare che sono numerose le residenze e le attività che la rilocalizzazione del modello a seguito della simulazione va ad insediare in questa corona.

	1		2		3		4		5		Tota	ıle
1	-868	-22%	-523	-19%	117	16%	11	4%	107	86%	-1.156	-15%
2	-1.919	-19%	-9.915	-30%	-477	-6%	55	2%	1.046	76%	-11.209	-20%
3	-1.384	-13%	-6.191	-16%	-9.110	-19%	-1.048	-6%	4.022	51%	-13.710	-11%
4	-423	-15%	-1.199	-9%	-2.538	-14%	-6.152	-23%	3.641	42%	-6.670	-9%
5	451	45%	5.213	59%	5.017	34%	6.648	40%	36.039	90%	53.368	66%
Totale	-4.142	-14%	-12.615	-13%	-6.991	-8%	-486	-1%	44.856	77%	20.623	6%

Tabella 14: Confronto Matrice OD per PGTU per il motivo lavoro tra lo scenario di Base e lo scenario SPRAWL 02 C Simulato

2.4.1.2 Spostamenti Casa-Altri Motivi

	1	1	2		3		4	ļ	5		Tota	ale
1	-451	-31%	-622	-34%	-269	-17%	29	9%	205	127%	-1.109	-21%
2	-863	-27%	-8.230	-42%	-4.476	-30%	-126	-4%	1.552	99%	-12.143	-29%
3	-372	-8%	-6.434	-27%	-16.453	-30%	381	4%	5.882	112%	-16.996	-17%
4	31	1%	-2.380	-19%	-5.712	-24%	-2.063	-16%	5.370	90%	-4.753	-8%
5	1.715	78%	6.631	59%	10.277	52%	7.391	85%	35.251	149%	61.266	93%
Totale	60	0%	-11.035	-16%	-16.632	-15%	5.611	17%	48.260	132%	26.265	10%

Tabella 15: Matrice OD per PGTU per motivo non lavoro (ScSup, ScUni e Altro) tra lo scenario di Base e lo scenario SPRAWL 02 C Simulato

2.4.2 Analisi per singolo modo di trasporto

I valori numerici riportati nelle seguenti matrici OD indicano gli spostamenti da e per le singole corone e sono suddivisi in base alla modalità di spostamento :Auto, Moto, Trasporto pubblico e a Piedi.

2.4.2.1 Auto

Dall'analisi dei risultati si nota un incremento degli spostamenti in auto da, per e all'interno della quinta corona PGTU, dovuti essenzialmente alla ridotta offerta di trasporto pubblico su ferro.

	1		2		3		4		5		Totale	
1	0	0%	-362	-31%	-394	-32%	-24	-5%	206	90%	-574	-19%
2	0	0%	-3.040	-27%	-3.540	-28%	-125	-3%	2.062	85%	-4.642	-15%
3	0	0%	-3.540	-28%	-9.584	-23%	-410	-2%	8.477	74%	-5.057	-6%
4	0	0%	-125	-3%	-5.681	-21%	-1.755	-8%	8.259	65%	699	1%
5	0	0%	8.061	74%	11.373	45%	13.311	61%	51.562	120%	84.307	84%
Totale	0	0%	995	2%	-7.825	-7%	10.997	16%	70.567	101%	74.734	26%

Tabella 16: Matrice OD per PGTU per modo auto tra lo scenario di Base e lo scenario SPRAWL_02_C Simulato

2.4.2.2 Moto

	1		2		3		4		5		Totale	
1	-402	-34%	-207	-32%	-50	-25%	-16	-26%	0	1%	-674	-32%
2	-1.611	-35%	-1.616	-32%	-442	-25%	-133	-26%	11	6%	-3.791	-31%
3	-2.417	-42%	-2.992	-39%	-1.536	-28%	-882	-35%	-4	-1%	-7.831	-35%
4	-1.235	-47%	-1.949	-45%	-1.246	-36%	-828	-30%	-61	-6%	-5.319	-37%
5	-403	-33%	-839	-30%	-621	-23%	-321	-18%	1.556	60%	-627	-6%
Totale	-6.067	-40%	-7.603	-37%	-3.894	-29%	-2.180	-29%	1.502	32%	-18.243	-30%

Tabella 17: Matrice OD per PGTU per modo moto tra lo scenario di Base e lo scenario SPRAWL_02_C Simulato

2.4.2.3 Trasporto pubblico

Per questa modalità di spostamento gli incrementi maggiori si registrano da e per la quinta corona. In particolare dall'analisi di questi dati si può notare che rispetto al modo auto, si è molto ridoto in termini unitari e percentuali l'incremento di spostamenti interni con il trasporto pubblico nella quinta corona. Questo è dovuto essenzialmente alla struttura della rete su ferro, in cui la maggior parte delle linee tendono a collegare le zone periferiche con il centro, così da rendere più conveniente l'uso dell'auto.

	1		2		3	1	4	ļ	5	5	Tot	ale
1	-390	-14%	-482	-19%	291	35%	80	95%	106	316%	-396	-6%
2	-1.047	-12%	-9.850	-37%	-871	-10%	187	21%	524	157%	-11.057	-24%
3	661	7%	-5.878	-20%	-6.503	-20%	410	9%	1.431	153%	-9.880	-13%
4	843	35%	-435	-6%	-1.190	-11%	-2.565	-35%	816	92%	-2.531	-9%
5	2.569	130%	4.621	72%	4.542	72%	1.049	55%	7.931	95%	20.712	83%
Totale	2.636	10%	-12.025	-16%	-3.731	-6%	-839	-6%	10.808	102%	-3.151	-2%

Tabella 18: Matrice OD per PGTU per modo trasporto pubblico tra lo scenario di Base e lo scenario SPRAWL 02 C Simulato

2.4.2.4 Piedi

	1		2	,	3	}	4	ļ	5	5	Tot	ale
1	-527	-37%	-94	-47%	0	0%	0	0%	0	0%	-621	-38%
2	-123	-47%	-3.639	-40%	-100	-26%	0	0%	0	0%	-3.862	-40%
3	0	0%	-139	-39%	-7.939	-36%	-56	-53%	0	0%	-8.134	-36%
4	0	0%	0	0%	-133	-49%	-3.013	-35%	-2	-61%	-3.149	-35%
5	0	0%	0	0%	0	0%	0	9%	10.242	102%	10.242	102%
Totale	-650	-38%	-3.872	-40%	-8.172	-36%	-3.070	-35%	10.239	102%	-5.525	-10%

Tabella 19: Matrice OD per PGTU per modo piedi tra lo scenario di Base e lo scenario SPRAWL_02_C Simulato

2.4.3 Ripartizione modale totale e (in Entrata e in Uscita) per PGTU

Nel seguente paragrafo sono riportati i risultati ottenuti dal confronto tra le Matrici modali dello scenario di Riferimento e dello scenario *SPRAWL_02_C Simulato*, in particolare i valori numerici sono relativi al numero di spostamenti in Uscita e in Entrata dalle corone PGTU per diverso modo di trasporto.

2.4.3.1 In Uscita

Dall'analisi dei valori ottenuti dalla simulazione dello scenario si nota che i maggiori incrementi di spostamenti si hanno per l'auto e in misura minore per il trasporto pubblico in uscita dalla quinta corona PGTU.

	Auto	Moto	TP	Piedi	Totale
1	3.088	2.113	6.252	1.638	13.090
2	31.265	12.067	45.485	9.758	98.576
3	97.048	21.580	78.167	22.821	219.616
4	76.304	14.034	28.670	8.985	127.994
5	100.963	11.126	24.950	10.079	147.118
Totale	308.669	60.920	183.525	53.281	606.395

Tabella 20: Ripartizione modale Scenario di Base per corone PGTU

	Auto	Moto	TP	Piedi	Totale
1	2.514	1.439	5.856	1.016	10.825
2	26.624	8.276	34.428	5.896	75.224
3	91.916	14.020	68.287	14.687	188.910
4	75.934	8.661	26.140	5.836	116.571
5	185.270	10.499	45.662	20.321	261.752
Totale	382.257	42.895	180.374	47.756	653.282

Tabella 21: Ripartizione modale Scenario SPRAWL_02_C Simulato per corone PGTU

	Auto	Moto	TP	Piedi	Totale
1	-574	-674	-396	-622	-2.265
2	-4.641	-3.791	-11.057	-3.862	-23.352
3	-5.132	-7.560	-9.880	-8.134	-30.706
4	-370	-5.373	-2.530	-3.149	-11.423
5	84.307	-627	20.712	10.242	114.634
Totale	73.588	-18.025	-3.151	-5.525	46.887

Tabella 22: Variazione degli spostamenti in uscita per corone PGTU tra lo scenario di Base e lo Scenario SPRAWL_02_C Simulato

	Auto	Moto	TP	Piedi	Totale
1	-19%	-32%	-6%	-38%	-17%
2	-15%	-31%	-24%	-40%	-24%
3	-5%	-35%	-13%	-36%	-14%
4	0%	-38%	-9%	-35%	-9%
5	84%	-6%	83%	102%	78%
Totale	24%	-30%	-2%	-10%	8%

Tabella 23: Variazione percentuale degli spostamenti in uscita per corone PGTU tra lo scenario di Base e lo Scenario SPRAWL_02_C Simulato

2.4.3.2 In Entrata

Per la domanda di spostamenti in entrata si registrano incrementi per gli spostamenti in auto nella quinta corona e per il trasporto pubblico nella terza corona PGTU.

	Auto	Moto	TP	Piedi	Totale
1	0	15.306	25.839	1.699	42.844
2	62.474	20.398	73.096	9.669	165.637
3	108.204	13.656	59.419	23.014	204.293
4	68.374	6.894	14.614	8.819	98.701
5	69.617	4.666	10.556	10.081	94.920
Totale	308.669	60.920	183.525	53.281	606.395

Tabella 24: Ripartizione modale Scenario di Base per corone PGTU

	Auto	Moto	TP	Piedi	Totale
1	0	9.239	28.475	1.048	38.762
2	62.324	12.795	61.071	5.797	141.987
3	100.378	9.762	55.688	14.842	180.670
4	79.372	4.931	13.775	5.749	103.827
5	140.183	6.169	21.364	20.320	188.036
Totale	382.257	42.895	180.374	47.756	653.282

Tabella 25: Ripartizione modale Scenario SPRAWL_02_C per corone PGTU

	Auto	Moto	TP	Piedi	Totale
1	0	-6.067	2.636	-651	-4.082
2	-150	-7.603	-12.025	-3.872	-23.650
3	-7.826	-3.894	-3.731	-8.172	-23.623
4	10.998	-1.963	-839	-3.070	5.126
5	70.566	1.503	10.808	10.239	93.116
Totale	73.588	-18.025	-3.151	-5.525	46.887

Tabella 26: Variazione degli spostamenti in uscita per corone PGTU tra lo scenario di Base e lo Scenario SPRAWL_02_C Simulato

	Auto	Moto	TP	Piedi	Totale
1	0%	-40%	10%	-38%	-10%
2	0%	-37%	-16%	-40%	-14%
3	-7%	-29%	-6%	-36%	-12%
4	16%	-28%	-6%	-35%	5%
5	101%	32%	102%	102%	98%
Totale	24%	-30%	-2%	-10%	8%

Tabella 27: Variazione percentuale degli spostamenti in uscita per corone PGTU tra lo scenario di Base e lo Scenario Compatto SPRAWL_02_C

3. Analisi dell'elasticità del modello di simulazione (13_Loc. vs. 14_zone etc)

3.1 Variazione di Popolazione

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione
1	8.559	14.963	47.258
2	44.940	129.325	359.884
3	81.098	324.556	863.370
4	54.422	232.270	571.468
5	77.527	307.178	769.996
Totale	266.546	1.008.293	2.611.976

Tabella 28: Popolazione nell'area di Studio per corone PGTU scenario SPRAWL_02_C non simulato

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione
1	6.964	11.607	37.742
2	38.488	90.879	269.579
3	76.441	255.559	709.281
4	51.375	181.252	469.553
5	93.278	468.996	1.125.871
Totale	266.546	1.008.293	2.612.025

Tabella 29: Popolazione nell'area di Studio per corone PGTU scenario SPRAWL_02_C simulato

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione
1	-1.596	-3.356	-9.516
2	-6.452	-38.446	-90.305
3	-4.657	-68.997	-154.089
4	-3.047	-51.018	-101.915
5	15.751	161.817	355.875
Totale	0	0	0

Tabella 30: Variazione della Popolazione nell'area di Studio e nelle 5 PGTU tra lo scenario SPRAWL_02_C simulato e lo scenario Compatto 01 C non simulato

PGTU	Occupati di fascia Alta	Occupati di fascia Bassa	Popolazione
1	-19%	-22%	-20%
2	-14%	-30%	-25%
3	-6%	-21%	-18%
4	-6%	-22%	-18%
5	20%	53%	46%
Totale	0%	0%	0%

Tabella 31: Variazione percentuale della Popolazione nell'area di Studio e nelle 5 PGTU tra lo scenario SPRAWL_02_C simulato e lo scenario SPRAWL_02_C non simulato

Analizzando i risultati ottenuti dalla simulazione dello *Scenario Sprawl_02_C* per la popolazione residente nell'area di studio, si nota che è accentuata ulteriormente la tendenza per i residenti ad insediarsi nelle zone più periferiche appartenenti alla quinta corona PGTU, dove è concentrata maggiormente la disponibilità di nuova SUL.

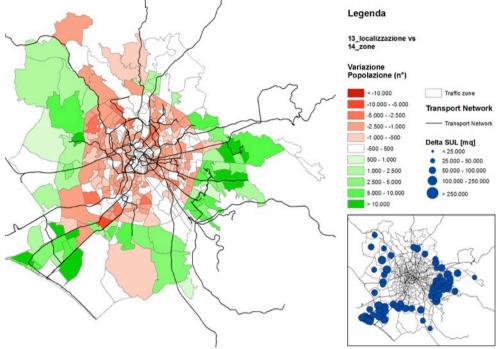


Figura 15: Variazione della popolazione residente per zona di traffico a seguito della simulazione

3.1.1 Variazione Occupati di fascia Alta

All'interno dell'area di studio si registra una diminuzione del numero di *occupati di fascia alta*, in particolare tali valori negativi si registrano nella prima, seconda, terza, quarta corona PGTU, come si può osservare anche dai risultati numerici.

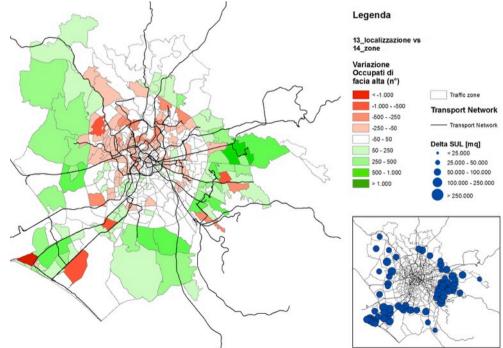


Figura 16: Variazione degli Occupati Alti per zona di traffico a seguito della simulazione

3.1.2 Occupati di fascia Bassa

Osservando la figura di seguito riportata si può notare che la maggior parte delle zone di traffico interessate da ridistribuzione positiva di *Occupati di fascia bassa* a seguito della simulazione è localizzata nella quinta corona PGTU.

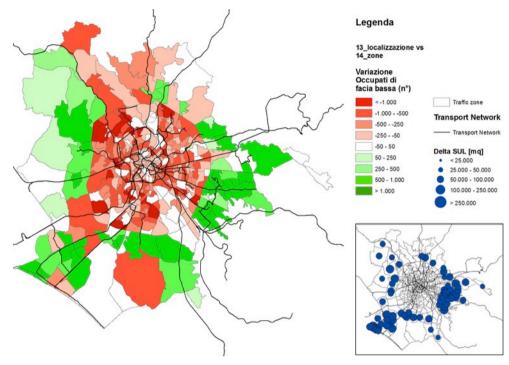


Figura 17: Variazione degli Occupati Bassi per zona di traffico a seguito della simulazione

3.2 Variazione di Addetti

PGTU	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	49.528	9.873	97.225
2	162.699	28.477	307.522
3	128.760	46.508	303.309
4	92.921	45.171	257.249
5	90.425	57.420	309.534
Totale	524.334	187.449	1.274.839

Tabella 32: Addetti nell'area di Studio per corone PGTU scenario di Base

PGTU	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	46.873	7.543	91.988
2	146.472	20.319	282.265
3	117.870	34.472	280.180
4	82.581	34.897	236.793
5	130.538	90.219	383.613
Totale	524.334	187.449	1.274.839

Tabella 33: Addetti nell'area di Studio per corone PGTU scenario SPRAWL_02_C

PGTU	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	-2.655	-2.330	-5.236
2	-16.227	-8.158	-25.257
3	-10.890	-12.036	-23.130
4	-10.340	-10.274	-20.457
5	40.113	32.799	74.080
Totale	0	0	0

Tabella 34: Variazione Addetti nell'area di Studio per corone PGTU scenario SPRAWL_02_C

PGTU	Addetti ai Servizi Privati	Addetti al Commercio	Addetti Totali
1	-5%	-24%	-5%
2	-10%	-29%	-8%
3	-8%	-26%	-8%
4	-11%	-23%	-8%
5	44%	57%	24%
Totale	0%	0%	0%

Tabella 35: Variazione percentuale Addetti nell'area di Studio per corone PGTU scenario SPRAWL_02_C

SUM SUSTAINABLE URBAN MOBILITY Linee guida per la mobilità sostenibile nelle aree urbane

REPORT SCENARIO: SPRAWL 02 C

Analizzando i risultati ottenuti dalla simulazione dello *Scenario Sprawl_02_C* per gli *Addetti Totali* localizzati all'interno dell'area di studio, si può osservare dai dati numerici riportati nelle precedenti tabelle, che le corone PGTU interessate da un loro incremento, a seguito della ridistribuzione effettuata dal modello, sono contenute nella quinta corona PGTU.

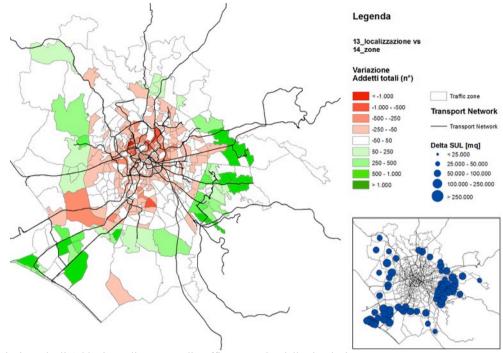


Figura 18: Variazione degli Addetti Totali per zona di traffico a seguito della simulazione

3.2.1 Addetti al Commercio

A seguito delle simulazione gli *Addetti al Commercio* diminuiscono registrano incrementi significativi solo nella quinta corona PGTU.

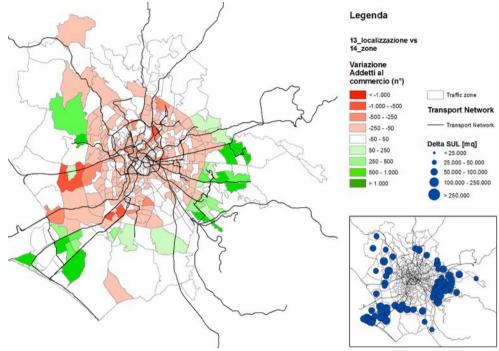


Figura 19: Variazione degli Addetti al Commercio per zona di traffico a seguito della simulazione

3.2.2 Addetti ai Servizi Privati

A seguito della simulazione, il modello ridistribuisce un maggiore numero di *Addetti ai Servizi Privati* nella quinta corona PRGTU.

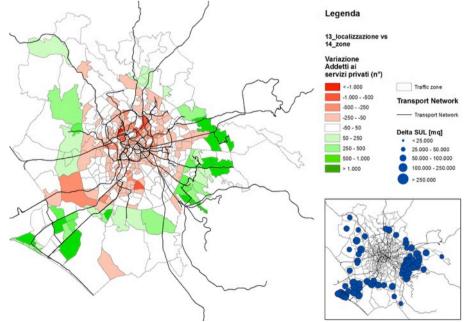


Figura 20: Variazione degli Addetti ai Servizi Privati per zona di traffico a seguito della simulazione

4. Analisi di sostenibilità urbana

Gli scenari di sviluppo urbano della città di Roma sono stata valutati mediante la definizione e la stima di un set di indicatori volti a testare sistematicamente la sostenibilità ambientale, economica e sociale delle diverse alternative di sviluppo urbano, Tali indicatori sono stati calcolati per ciascuno scenario e successivamente comparati con lo scenario di base (2011) e lo scenario PRG. Nella seguente tabella si riportano gli indicatori utilizzati in questo studio suddivisi per categorie.

Sostenibilità	Indicatori	Unità di misura
	Tempi medi in auto in uscita (pesati sulla domanda di mobilità)	Minuti
Economica	Tempi medi con il tp in uscita (pesati sulla domanda di mobilità)	Minuti
	Costi totali di costruzione	Euro
	Consumo di suolo	Metri quadri
	Residenti e posti di lavoro nel centro città	Attività/ettaro
	Spostamenti in auto, moto, tp, piedi	Utenti/ora di punta
Ambientale	Share modale auto, moto, tp, piedi	%
	Veikoli.km	Km/ora di punta
	Emissioni di CO2 derivanti dall'uso dell'auto	Tonnellate/ora di punta
	Consumo di energia derivante dall'uso dell'auto	MJ/ora di punta
	Distanze medie percorse in auto in uscita (pesate sulla domanda di mobilità)	km
	Accessibilità ai posti di lavoro con l'auto	Adimensionale
Sociale	Accessibilità ai posti di lavoro con il trasporto pubblico	Adimensionale
	Diseguaglianza nella distribuzione dell'accessibilità del tp (Coefficiente di Gini)	Adimensionale

Tabella 36: Indictori di sostenibilità amientale, economica e sociale

Il sistema di indicatori appena descritto utilizza come input i risultati di un sistema di modellidi interazione trasportiterritorio denominato STIT (Coppola & Nuzzolo, 2011) in cui viene simulato esplicitamente non solo l'impatto che la
distribuzione delle attività urbane sul territorio (prevalentemente residenze, servizi e attività commerciali) ha sulla
domanda di spostamento e quindi sulle prestazioni dell'offerta di trasporto ma, anche il feedback inverso, vale a dire
come le variazioni di offerta di trasporto, ovvero di accessibilità delle zone, modificano la convenienza localizzativa
delle zone e quindi inducono, nel lungo periodo, variazioni della distribuzione delle residenze e di alcune attività che a
loro volta inducono variazioni di domanda di spostamento. Il sistema di modelli in questione è stato applicato in diversi
contesti territoriali per la previsione degli impatti di lungo periodo che alcune modifiche significative dell'offerta di
trasporto (ad esempio la realizzazione di nuove strade e/o di linee metropolitane) hanno sulla domanda di mobilità in un
ambito urbano (Nuzzolo & Coppola, 2007; Coppola et al., 2013; Coppola et al., 2014)

4.1 Sostenibilità economica

Per quanto concerne la dimensione economica della sostenibilità si è provveduto in primo luogo alla definizione di indicatori rappresentativi delle performance delle reti di trasporto, quali i tempi medi di spostamento in uscita per auto T_{medio}^{auto} e trasporto pubblico T_{medio}^{tp} , pesati rispetto alla domanda di mobilità d_{od} :

$$T_{medio}^{auto} = \sum_o rac{\sum_d t_{od}^{auto}.d_{od}^{auto}}{\sum_d d_{od}^{auto}}$$

$$T_{medio}^{tp} = \sum_o rac{\sum_d t_{od}^{tp}.d_{od}^{tp}}{\sum_d d_{od}^{tp}}$$

$$t_{od}^{tp} = t_{od}^{attesa} + t_{od}^{bordo} + t_{od}^{trasbordo}$$

Una riduzione dei tempi di spostamento nelle aree urbane è infatti generalmente associata ad un incremento della produttività delle imprese presenti sul territorio, vista l'incidenza dei costi di trasporto sul costo di produzione di beni e servizi (Small, 2013). Una riduzione dei tempi di spostamento può avere anche impatti positivi sulla produttività degli individui. In particolar modo una riduzione dei costi del pendolarismo permette agli individui di disporre di più tempo da dedicare ad un secondo lavoro o ai propri bisogni, organizzare la giornata in maniera più flessibile con meno stress, e dunque essere più produttivi (Shires e De Jong, 2009).

In tabella 37 sono riportati i tempi medi di spostamento per auto e trasporto pubblico per le cinque corone concentriche in cui è stata suddivisa l'area di studio. Sono state valutate inoltre le variazioni percentuali rispetto allo scenario di Base e rispetto allo scenario PRG_C. Sia i tempi di spostamento in auto che con il trasporto pubblico aumentano a mano a mano che ci si muove dalla prima alla quinta corona. I tempi di spostamente in auto risultano essere sensibilmente minori dei corrispettivi tempi dello scenario di base e pressochè gli stessi dello scenario PRG_C. I tempi medi cn il trasporto pubblico variano di poco rispetto agli scenari di benchmark.I tempi di spostamento in uscita in auto e con il trasporto pubblico per i tre scenari sono rappresentati in figura 21 (tempi auto) e in figura 22 (tempi trasporto pubblico).

	Sce	nario	vs l	Base	vs PI	RG_C
Corona	Tempi medi					
	auto	tp	auto	tp	auto	tp

	minuti	minuti	%	%	%	%
1	23,7	15,0	-12,4%	-5,7%	4,4%	1,2%
2	23,5	19,9	-12,4%	-1,2%	2,9%	0,0%
3	25,3	24,8	-18,4%	-8,1%	1,6%	0,6%
4	25,7	32,8	-23,3%	-8,8%	0,6%	1,0%
5	31,5	42,1	-31,7%	-16,0%	-4,5%	-6,9%
scenario	28,3	29,1	-21,8%	-1,3%	-0,6%	3,2%

Tabella 37: Tempi medi in uscita per auto e tp e comparazione rispetto allo scenario di base e allo scenario PRG_C

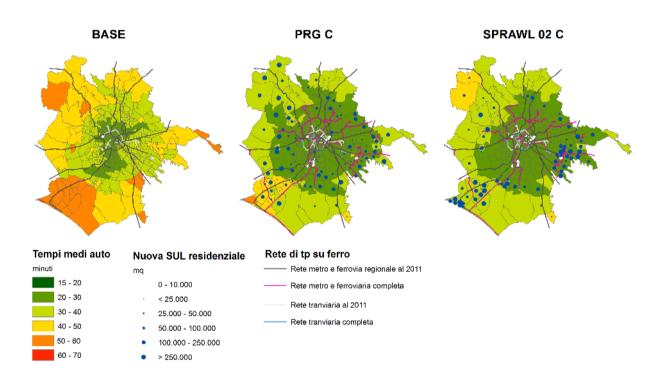


Figura 21: Tempi medi auto in uscita scenari Sprawl_02_C, PRG_C e Base

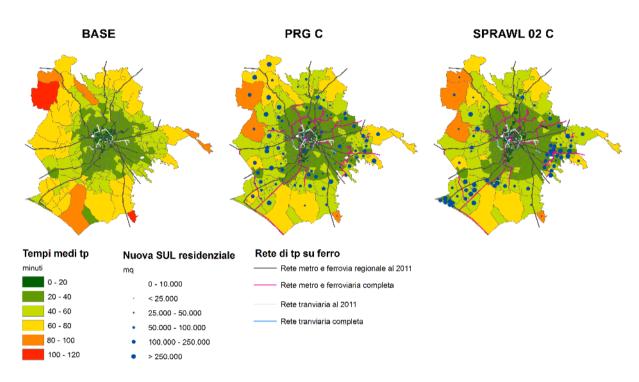


Figura 22: Tempi medi trasporto pubblico (tp) in uscita scenari Sprawl_02_C, PRG_C e Base

Un ulteriore indicatore economico presso in considerazione è il costo di costruzione C_{costr}^{tot} per nuove infrastrutture C_{costr}^{infra} e nuovi insediamenti C_{costr}^{ins} :

$$C_{costr}^{tot} = C_{costr}^{infra} + C_{costr}^{ins}$$

Il costo di costruzione delle infrastrutture è stato stimato attraverso un'analisi parametrica. Per ciascuna tipologia di infrastruttura considerata, il costo è ottenuto moltiplicando la lunghezza dell'infrastruttura viaria l_{infra} per il corrispettivo costo unitario c_{costr}^{infra} :

$$C_{costr}^{infra} = l_{infra} . c_{costr}^{infra}$$
 $c_{costr}^{infra} = f(tipologia\ infrastruttura)$

Per i costi unitari della rete metropolitana e della rete di tram si è fatto riferimento ai documenti redatti dal CIPE, dalla Camera dei Deputati e dalla società Roma Metropolitane (CIPE; 2004; Camera dei Deputati, 2009; Roma Metropolitane, 2012). Per i costi di realizzazione delle strade si è fatto riferimento ad uno studio prodotto dall' Autorità per la Vigilanza sui Contratti Pubblici (AVCP, 2006).

Il costo degli insediamenti si compone di tre voci: i) costi di costruzione propri¹; ii) costi di acquisizione dei suoli e iii) costi di urbanizzazione:

¹ Costi di realizzazione del manufatto edilizio comprensivi di spese generali ed utili delle imprese.

$$C_{costr}^{ins} = C_{propri} + C_{acq.suoli} + C_{urb}$$

I costi di costruzione propri sono stati stimati in maniera parametrica, moltiplicando la Superficie Utile Lorda SUL per il corrispettivo costo unitario c_{costr}^{ins} , quest'ultimo funzione della tipologia edilizia considerata:

$$SUL.\,c_{costr}^{ins}$$
 $c_{costr}^{ins}=f(tipologia\ edilizia)$

I costi di costruzione unitari per le diverse tipologie edilizie sono stati ricavati dal Bollettino Prezzi Tipologie Edilizie (Colleggio degli Ingegneri ed Architetti di Milano,2012).

I costi di acquisizione dei suoli sono stati stimati tenendo conto delle Superfici Territoriali ST da acquisire per la realizzazione della trasformazione immobiliare. I costi dei suoli al mq $c_{acq.suoili}^{mq}$ variano in funzione della localizzazione e sono stati definiti a partire da un'indagine di mercato sui valori dei suoli edificabili condotta dal gruppo di ricerca nel 2014.

$$\begin{aligned} &C_{aq-suoil} = ST. \, c_{aq.suoili}^{mq} \\ &c_{aq-suoili}^{mq} = f(localizzazione) \end{aligned}$$

I costi di urbanizzazione sono stati stimati come una aliquota dei costi di costruzione. Tale aliquota è minima per le aree già urbanizzate o parzialmente urbanizzate, mentre è massima per le aree periferiche in cui i costi di realizzazione delle infrastrutture civili sono generalmente più elevati (Hortas-Rico & Solé-Ollé, 2010).

$$C_{urb}=k. C_{propri}$$

 $0.05 < k < 0.2$
 $k = f(localizzazione)$

In tabella 38 vengono riportati i costi di costruzione che risultano essere sensibilmente maggiori dei corrispettivi costi dello scenario PRG_C. Ciò è dovuto agli elevati costi di acquisizione dei terreni nonché ai costi unitari maggiori necessari alla realizzazione degli interventi previsti.

	vs PRG_C		
Costi edilizia	Costi infrastrutture	Costi totali	Costi totali
Mil. euro	Mil. euro	Mil. euro	%
15.259.632.090	13.437.154.120	28.696.786.210	21,3%

Tabella 38: Costi per la realizzione di nuovi insediamenti e nuove infrastrutture e confronto con lo scenario PRG_C

4.2 Sostenibilità ambientale

La componente ambientale della sostenibilità è stata misurata in primo luogo in termini di consumo di suolo, ovvero valutando la perdita di aree libere necessarie alla realizzazione delle nuove infrastrutture C_{suolo}^{infra} e dei nuovi insediamenti C_{suolo}^{ins} :

$$C_{suolo}^{tot} = C_{suolo}^{infra} + C_{suolo}^{ins}$$

Il consumo di suolo per la realizzazione di infrastrutture di trasporto è stato calcolato come il prodotto della lunghezza dell'infrastruttura di trasporto considerata l_{infra} per la larghezza della sezione s_{infra} . Quest'ultima differenziata in funzione della tipologia di infrastruttura di trasporto presa in considerazione. Il consumo di suolo per la realizzazione dei nuovi insediamenti è funzione delle tipologie edilizie considerate:

$$C_{suolo}^{ins} = f(tipologia\ edilizia)$$

In tabella 39 è riportato il consumo di suolo per lo scenario in analisi ed un confronto con lo scenario PRG_C. Il consumo di suolo dello scenario in oggetto risulta essere sensibilmente maggiore dello scenario PRG a causa delle tipologie edilizie previste per lo scenario disperso.

	vs PRG_C		
C. suolo edilizia	C. suolo infrastrutture	C. suolo totale	C. suolo totale
Mil. mq	Mil. mq	Mil. mq	%
11.088.000	5.575.567	16.663.567	114,5%

Tabella 39: Consumo di suolo per la realizzazione di nuovi insediamenti e nuove infrastrutture e confronto con lo scenario PRG_C

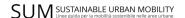
In secondo luogo, al fine di monitorare il livello di congestione nelle aree centrali, si è tenuto in conto delle densità medie residenziali e di addetti nelle prime tre corone dell'area di studio:

$$Densit\grave{a}_{centro}^{attivit\grave{a}} = \frac{\sum_{i}^{n} Pop_{i} + \sum_{i}^{n} Add_{i}}{\sum_{i}^{n} ST_{i}}$$

Con Pop_i ed Add_i , rispettivamente la popolazione residente e gli addetti insediati nella generica zona i.

I risultati in tabella 40 mostrano una sostanziale riduzione della densità di attività sia rispetto allo scenario di base che rispetto allo scenario PRG C che si realizza a causa della rilocalizzazione di addetti e residenti in aree periferiche.

Scenario	vs Base	vs PRG_C
Densità di attività	Densità di attività	Densità di attività
attività/ettaro	%	%
142,1	-24,5%	-13,7%


Tabella 40: Densità di attività nelle prime tre corono e confronto con gli scenari PRG_C e Base

Un ulteriore indicatore ambientale è rappresentato dalle distanze percorse in auto, calcolate in termini di veicoli.km:

$$Veicoli.km = \frac{\sum_{d} dist_{od}^{auto}.d_{od}^{auto}}{g_{occ}}$$

Per il calcolo dei veicoli.km si è considerato un grado di occupazione del veicolo g_{occ} pari a 1,67 passeggeri/veicolo (EEA, 2010).

Scenario	vs Base	vs PRG_C
----------	---------	----------

Distanze totali	Distanze totali	Distanze totali
veicoli.km	veicoli.km	veicoli.km
7.312.173	-3,7%	0.1%

Tabella 41: Veicoli.km e confronto con gli scenari PRG_C e Base

Come è possibile osservare dalla tabella, lo scenario di analisi presenta valori pressocchè identici agli scenari di benchmark.

A partire dai Veicoli.km, sono state stimate le esternalità ambientali associate all'uso dell'auto, calcolate in termini di emissioni di C02 e consumi energetici:

$$\begin{split} Emissioni_{O2}^{auto} &= Veicoli.\,km.\,k_{emissioni}\\ Consumi_{energia}^{auto} &= Veicoli.\,km.\,k_{consumi} \end{split}$$

Con k_{emissioni} e k_{consumi} due coefficienti rappresentativi rispettivamente delle emissione e dei consumi di C02 per km.

Scenario	vs Base	vs PRG_C
Consumo energetico	Consumo energetico	Consumo energetico
GJ	GJ	GJ
33.782	-3,7%	0,1%

Tabella 42: Consumi energetici derivanti dall'uso dell'auto e confronto con gli scenari PRG_C e Base.

Scenario	vs Base	vs PRG_C	
Emissioni C02	Emissioni C02	Emissioni C02	
t	t	t	
641	-3,7%	0,1%	

Tabella 43: Emissioni di C02 derivanti dall'uso dell'auto e confronto con gli scenari PRG C e Base

Oltre ai veicoli.km, sono state calcolate le distanze medie in uscita percorse in auto per le cinque corone e per l'intera area di studio:

$$Dist_{media}^{auto} = \sum_{o} \frac{\sum_{d} dist_{od}^{auto}.d_{od}^{auto}}{\sum_{d} d_{od}^{auto}}$$

	Scenario	vs Base	vs PRG_C
	Distanze medie auto	Distanze medie auto	Distanze medie auto
Corona	km	%	%

I I	l i	l i	İ
1	10,1	22,1%	6,6%
2	10,7	25,2%	6,1%
3	12,8	26,4%	4,7%
4	15,2	20,5%	2,8%
5	19,0	0,2%	-6,8%
scenario	16,1	19,8%	-0,4%
TD 1 11 44 D' (at the state of th		11 ' DD C C

Tabella 44: Distanze medie in uscita percorse in auto e comparazione rispetto allo scenario di base e allo scenario PRG C

I dati riportati nelle tabelle mostrano chiaramente un incremento delle distanze medie percorse rispetto allo scenario di base ed una variazione circa nulla rispetto allo scenario PRG_C.

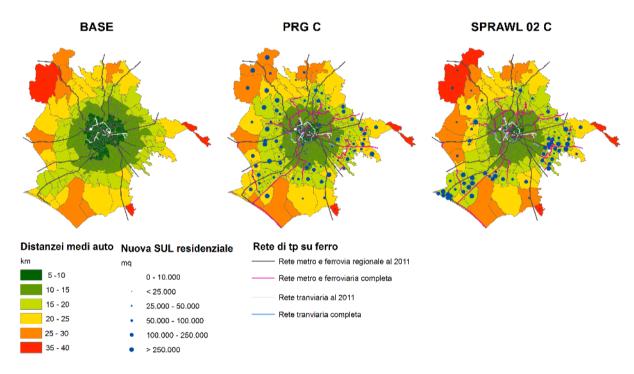


Figura 23: Distanze medie in uscita percorse in auto, scenari Sprawl 02 C, PRG C e Base

Sono stati infine calcolati gli spostamenti totali in auto e moto, con il trasporto pubblico e a piedi:

$$d_{auto} = \sum_{d} d_{od}^{auto}; \ d_{moto} = \sum_{d} d_{od}^{moto}; \ d_{tp} = \sum_{d} d_{od}^{tp} \quad ; \quad d_{piedi} = \sum_{d} .d_{od}^{piedi}$$

	Scen	nario	
Spostamenti	Spostamenti	Spostamenti	Spostamenti

auto	tp	piedi	moto
utenti/ora di punta	utenti/ora di punta	utenti/ora di punta	utenti/ora di punta
382.257	180.374	47.756	42.895

vs Base					
Spostamenti auto	Spostamenti tp	Spostamenti piedi	Spostamenti moto		
utenti/ora di punta	utenti/ora di punta	utenti/ora di punta	utenti/ora di punta		
23,8%	-1,7%	-21,6%	-19,5%		

vs PRG_C					
Spostamenti auto	Spostamenti tp	Spostamenti piedi	Spostamenti moto		
utenti/ora di punta	utenti/ora di punta	utenti/ora di punta	utenti/ora di punta		
0,2%	-2,9%	5,4%	-2,9%		

Tabella 45: Spostamenti in auto, trasporto pubblico e a piedi e comparazione rispetto allo scenario di base e allo scenario PRG_C e lo share modale ad essi associato (tabella 46):

$$Share_{auto} = \frac{d_{auto}}{d_{auto} + d_{moto} + d_{tp} + d_{piedi}}; Share_{moto} = \frac{d_{moto}}{d_{auto} + d_{moto} + d_{tp} + d_{piedi}}$$

$$Share_{tp} = \frac{d_{tp}}{d_{auto} + d_{moto} + d_{tp} + d_{piedi}}; Share_{piedi} = \frac{d_{piedi}}{d_{a+m} + d_{tp} + d_{piedi}}$$

Scenario					
Share auto	Share tp	Share piedi	Share moto		
%	%	%	%		
58,5%	27,6%	7,3%	6,6%		

vs Base				
Share auto	Share tp	Share piedi	Share moto	
utenti/ora di punta	utenti/ora di punta	utenti/ora di punta	utenti/ora di punta	
15,0%	-8,8%	-27,2%	-25,3%	

vs PRG_C				
Share auto	Share tp	Share piedi	Share moto	
utenti/ora di punta	utenti/ora di punta	utenti/ora di punta	utenti/ora di punta	
0,7%	-2,4%	6,0%	-2,4%	

Tabella 46: Share modale e comparazione rispetto allo scenario di base e allo scenario PRG_C

4.3 Sostenibilità sociale

La component sociale della sostenibilità è stata misurata in termini di accessibilità ai posti di lavoro con l'auto e con il trasporto pubblico. In particolare due misure di accessibilità di tipo "gravity-based" (Hansen, 1959) sono state impiegate. Tali misure rappresentano una proxy della facilità con cui i cittadini possono raggiungere i luoghi di lavoro, rispettivamente con l'auto e con il trasporto pubblico. Per la generica zona o dell'area di studio, l'accessibilità al lavoro con auto $Acc_{job,o}^{auto}$ e trasporto pubblico $Acc_{job,o}^{tp}$ è stata calcolata come (Coppola e Nuzzolo, 2011):

$$Acc^{auto}_{job,o} = \sum_{d} Add^{\alpha 1}_{d}. \exp{(\alpha 2. t^{auto}_{od})}$$
 $Acc^{auto}_{job,o} = \sum_{d} Add^{\alpha 1}_{d}. \exp{(\alpha 2. t^{auto}_{od})}$

con $\alpha 1$, $\alpha 2$ due parametri da stimare. Tali valori sono stati aggregati per l'intera area urbano, calcolando un valore medio di accessibilità, pesato sul numero di occupati Occ_o :

$$Acc_{job,medio}^{auto} = \frac{\sum_{o}^{n} Acc_{job,o}^{auto} \cdot Occ_{o}}{\sum_{o}^{n} Occ_{o}}$$
$$Acc_{job,medio}^{tp} = \frac{\sum_{o}^{n} Acc_{job,o}^{tp} \cdot Occ_{o}}{\sum_{o}^{n} Occ_{o}}$$

L'accessibilità dell'auto va via via decrescendo dal centro alle zone periferiche. Ciò è dovuto principalmente alla concentrazione di addetti nelle aree centrali. Il fenomeno si registra anche per quanto concerne il trasporto pubblico. Dal confronto con lo scenario di base si evince che l'accessibilità auto e tp è sempre maggiore nello scenario in oggetto, in particolar modo nella quinta corona dove sono previsti i nuovi inerventi sullo stock ommobiliare. All'opposto il confronto con lo scenario PRG mosra una situazione mista: l'accessibilià auto e tp è leggermente minore nelle prime quattro corone e leggermente maggiore nella quinta.

	Scen	ario	vs l	Base	vs PI	RG_C
Corona	Accessibilità auto	Accessibilità tp	Accessibilità auto	Accessibilità tp	Accessibilità auto	Accessibilità tp
	adimensionale	adimensionale	%	%	%	%
1	58	65	22,3%	15,1%	-3,7%	-1,0%
2	49	52	21,7%	11,9%	-3,4%	-1,6%
3	38	43	36,3%	19,2%	-2,3%	-1,4%
4	35	31	48,5%	24,5%	-0,4%	-0,6%
5	23	22	69,0%	33,6%	5,2%	5,6%
scenario	32	33	30,4%	10,4%	-3,6%	-3,9%

Tabella 47: Accessibilità al lavoro con auto e trasporto pubblico e comparazione rispetto allo scenario di base e allo scenario PRG C

Oltre agli incrementi di accessibilità al lavoro si è ritenuto opportuno analizzare la distribuzione spaziale dell'accessibilità per verificare se tali incrementi siano distribuiti più o meno equamente tra la popolazione residente. In particolare è stata fatta una stima dell'equità orizzontale" (fairness or egalitarianism), che può essere interpretata come "fornire eguali risorse ad individui o gruppi di individui con le stesse abilità" (Delbosc e Currie, 2011). La disuguaglianza nella distribuzione dell'accessibilità è stata valutata utilizzando l'indice di Gini, calcolato con la seguente formula:

$$G = 1 - \sum_{k=1}^{n} (X_k - X_{k-1})(Y_k + Y_{k-1})$$

dove X_k è la percentuale cumulate della popolazione residente e Y_k la percentuali cumulate della variabile di accessibilità al lavoro con il trasporto pubblico precedentemente descritta.

Scenario	vs Base	vs PRG_C
Coeff. Gini	Coeff. Gini	Coeff. Gini
adimensionale	%	%
0,39471	28,8%	22,9%

Tabella 48: Inequità (Coefficiente di Gini) e comparazione rispetto allo scenario di base e allo scenario PRG_C

Dall'analisi del coefficiente di Gini risulta che lo scenario in analisi risulta esere meno equo sia dello scenario di base che dello scenario dello scenario PRG.

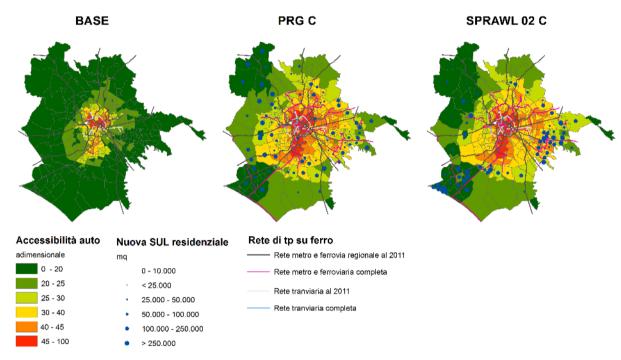


Figura 24: Accessibilità al lavoro con l'auto, scenari Sprawl_02_C, PRG_C e Base

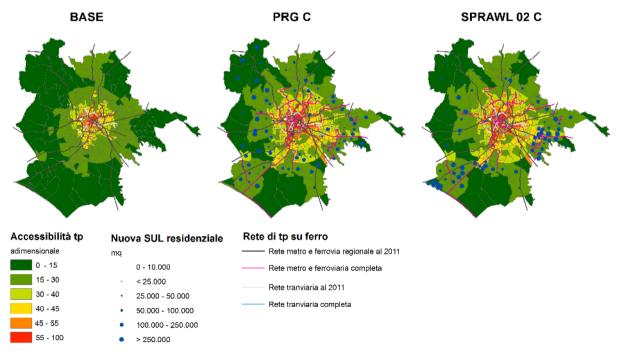


Figura 25: Accessibilità al lavoro con il trasporto pubblico, scenari Sprawl_02_C, PRG_C e Base

Bibliografia

- Autorità di Vigilanza sui Contratti Pubblici (2006). La definizione dei "costi standardizzati per tipo di lavoro".

 Available at:

 http://www.anticorruzione.it/portal/public/classic/AttivitaAutorita/Pubblicazioni/RapportiStudi/_definizioneCosti/
- Coppola, P., Ibeas, Á., dell'Olio, L., & Cordera, R. (2013). LUTI Model for the Metropolitan Area of Santander. *ASCE-Journal of Urban Planning and Development, 139*(3), 153-165. doi: 10.1061/(ASCE)UP.1943-5444.0000146.
- Coppola, P., Papa, E., Angiello, G., & Carpentieri, G. (2014). Urban form and sustainability: the case study of Rome. Procedia-Social and Behavioral Sciences, 160, 557-566. doi:10.1016/j.sbspro.2014.12.169
- Coppola P., Nuzzolo A. (2011) "Changing accessibility, dwelling price and the spatial distribution of socio-economic activities" Research in Transportation Economics, vol. 31, p. 63-71. doi: 10.1016/j.retrec.2010.11.009.
- Camera dei Deputati (2009). Scheda n. 104 Sistemi Urbani Valutazione economico-finanziaria della linea C aggiornata a dicembre 2009.
- CIPE (2004). Delibera CIPE n. 105 del 20/12/2004 1° programma Opere Strategiche: la linea C della metropolitana di Roma.
- COM (2011). Communication from the Commission to the European parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A roadmap for moving to a competitive low carbon economy in 2050. Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0112.
- Delbosc, A., & Currie, G. (2011). The spatial context of transport disadvantage, social exclusion and well-being. *Journal of Transport Geography*, 19(6), 1130-1137. doi:10.1016/j.jtrangeo.2011.04.005
- EEA (European Environment Agency) (2010). Occupancy rates of passenger vehicles. Available at: http://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles-1
- Hortas-Rico, M., & Solé-Ollé, A. (2010). Does urban sprawl increase the costs of providing local public services? Evidence from Spanish municipalities. *Urban Studies*, 47(7), 1513-1540. doi: 10.1177/0042098009353620
- Nuzzolo, A., Coppola P. (2007) "Accessibility and socioeconomic activities location" Proceedings of European Transportation Conference 2007, Noordwijkerhout, The Netherlands. ISBN 978-1-905701-02-5; ISSN 1 474-9122.
- Roma Metropolitane (2012). Gare aggiudicate. Available at: http://www.romametropolitane.it/articolo.asp?CodMenu=199&CodArt=202
- Shires, J. D., & De Jong, G. C. (2009). An international meta-analysis of values of travel time savings. *Evaluation and program planning*, 32(4), 315-325. doi:10.1016/j.evalprogplan.2009.06.010
- Small, K. (2013). Urban transportation economics (Vol. 4). Taylor & Francis.